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Summary:   Pitfalls, both subtle and obvious, await the new or casual practitioner of 
measurement uncertainty analysis.  This paper describes the more common mistakes that 
are made and gives a prescription for staying out of trouble.  A worked example illustrates 
the preferred technique. 

ISO- GUM PROCESS 

The ISO Guide to the Expression of Uncertainty in Measurement (GUM) prescribes six steps for 
the analysis of a measurement: 

Model the Measurement 

Develop the Measurement Equation 

Derive the Uncertainty Equation 

Determine the Standard Uncertainties 

Calculate the Combined Standard Uncertainty 

Determine the Expanded Measurement Uncertainty 

While these steps are designed to help analysts focus on the core of a measurement and to 
promote consistency in uncertainty analysis, each step offers opportunities to go astray.  A 
mistake in one step may cascade, perhaps amplified, to subsequent steps. 

 

MEASUREMENT EXAMPLE 

Absolute Amplitude Accuracy of a Spectrum Analyzer 

Specification: 

dBACC 27.0≤ , for amplitude levels between –10 dBm and –50 dBm. 

 

To verify this specification, a two-part procedure is followed.  The equipment connections for each 
part are shown below.  In Part 1, an accurate reference power level is established with a power 
sensor.  The spectrum analyzer measures this reference level.  In Part 2, several amplitude-test 
levels are established with a precision step-attenuator.  At each test level, the spectrum analyzer 



again measures the absolute amplitude.  The difference between the true power available from 
the network and the power indicated by the spectrum analyzer is defined as the absolute 
amplitude accuracy of the spectrum analyzer.   

 

 

 

Figure 1:  Measure the reference power with a power meter. 

 

 

Figure 2:  Measure the reference and other power levels with the spectrum analyzer. 

 



MODEL THE MEASUREMENT 

The measurement can be modeled as: 
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Each piece of equipment used in the measurement is modeled as either a two-port network or a 
one-port network.  The two-ports can be represented by s-parameters: 22211211 ,,, sandsss .  The 
signal generator can be represented as an active one-port with a reflection coefficient.  The 
spectrum analyzer and the power sensor can be represented as passive one-ports with only a 
reflection coefficient. 

PITFALL:   Omitting from the model any piece of equipment that seems insignificant. 

It is unwise to eliminate anything from the model which is present in the physical network, 
including cables and adapters, until a measurement equation has been created  and an 
uncertainty equation is derived.  Uncertainty terms can always be set to zero later in order to 
check the limits of changes to the network. 

MEASUREMENT EQUATION 

PITFALL:   Not writing a measurement equation at all. 

Do not be tempted to bypass the writing of a measurement equation and go straight to an 
assessment of the uncertainty. 

Without a measurement equation you risk: 

 Not identifying all of the sources of uncertainty in the measurement. 

 Not knowing the sensitivity of the total uncertainty to the individual contributors. 

 

PITFALL:   Treating uncertainty as a random variable separate from the associated parameter 
and including the uncertainty in the measurement equation. 

EXAMPLE:   [ ] [ ]MEASMEASSOURCESOURCE PPPPACC ∆+−∆+=  

Remember that each variable in the measurement equation is considered to be a random 
variable with a known (or assumed) probability distribution, characterized at the least by a mean 
value and a standard deviation. Adding extra terms to represent the uncertainty (standard 
deviation) of the variable is redundant and will lead to trouble. 

 



PITFALL:   Writing the measurement equation in the wrong domain (log or linear).   

If the performance specification being verified is expressed in dB units, then the measurement 
equation must be written in log terms.  If it is expressed in linear units (including percent), the 
measurement equation must be written in linear terms. 

Once the measurement equation is written, it can be transformed from one domain to the other 
(see example below) in order to expand the original equation into a more detailed version that 
accounts for all of the influence parameters (cable loss, attenuator settings, reflection coefficients, 
etc.)  

NOTE:  There are two good reasons why the measurement equation should be transformed to 
the linear domain (if it is not written there in the first place): 

In the linear domain, the measurement equation will often have the form 
FED
CBA

Y
××
××

= , which 

will allow writing the uncertainty equation by inspection.  (See example below.) 

 

The terms in the uncertainty equation will have the form 
( )
A
AU

, which has the dimensions of dB 

or %.  Many instrument specifications are quoted in the form of dB or %. 

 

PITFALL:   Incomplete or incorrect measurement equations. 

Once the mathematical model (cascade of two-ports, in this example) is complete, the 
development of the measurement equation, while messy, should be straightforward. 

EXAMPLE: 

Specification:  Amplitude Accuracy @ 50 MHz: dB27.0≤ , for input signals from -10 dBm to - 

50 dBm. 

Since the Amplitude Accuracy specification is given in dB, the measurement equation will be 
expressed in dB. 

 mAVdB PPACC −=   EQN. 1 

where:  ACC  is the absolute amplitude accuracy 

 AVP  is the absolute power available from the “effective” source 

 mP  is the power indicated by the spectrum analyzer 

 

This equation simply states that amplitude accuracy is the difference between the true power 
available at the spectrum analyzer’s input and the power indicated by the spectrum analyzer. 



The expression for AVP  is given by a signal-flow-graph analysis of Figure 3. 

 
[ ]
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AV MMMMM

AAAAAP
P
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where: 

 [ ]
GgZP

0
  is the power available from the signal generator. 

 6, AAATT are the gains of the external attenuators. 

 ACC AAA ,, 21 are the gains of the two Type N cables and the adapter.   

 
2

111 1
a

sM gC Γ−=  is the mismatch between the source and the first Type N cable. 

2

111
b

sM aATT Γ−=  is the mismatch between the first Type N cable and the composite 

attenuator. 

2
112 1 cbC sM Γ−=  is the mismatch between the composite attenuator and the second Type N 

cable. 

2
116 1 dc sM Γ−=  is the mismatch between the second Type N cable and the 6 dB attenuator. 

 
2

111 edA sM Γ−=  is the mismatch between the 6 dB attenuator and the adapter. 

Notice that the expression for AVP  is in the linear domain, whereas the measurement equation is 

in the log domain.  Rather than convert the expression for AVP  to the log domain, the 

measurement equation will be converted to the linear domain: 

 

     
m
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P
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(Subtraction in the log domain is equivalent to division in the linear domain.) 

For the reference amplitude level of this measurement (-10 dBm), the power sensor determines 

AVP , the available power.  The spectrum analyzer makes its own reading of the reference power.   



Therefore, the measurement equation at the reference amplitude is: 
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where [ ]
PSgZP 0  is the power that the network would deliver to a matched load, as estimated by 

the power sensor/power meter. 

In terms of the signal source and the intervening network, the measurement equation for the 
reference level measurement is: 
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At the test power levels: 
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 Since  [ ] REFGgZREFAV TPP ×=− 0    and  [ ] TESTGgZTESTAV TPP ×=− 0 ’ 
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   EQN. 6 

NOTE:  Since the final coaxial adapter has been deleted for the test connection to the spectrum 
analyzer, the terms AA  and AM  do not appear in EQN.  6.  (If an adapter is needed, the terms 

can be re-inserted into TESTT .) 



 Since 621, AandAA CC  do not change throughout the test, 
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Define:   [ ] TESTTESTATT AA =  

   [ ] REFREFAATT AAA =⋅  

   [ ] TESTTESTCATTC MMMMM =621  

   [ ] REFREFACATTC MMMMMM =621  

 

 Then:   
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UNCERTAINTY EQUATION 

The classic ISO-GUM uncertainty equation is: 
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PITFALL:   Partial differentiation in determining sensitivity coefficients. 

It is possible to avoid partial differentiation if the measurement equation has the form:   
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The uncertainty equation can be written as:  
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This equation contains relative uncertainty terms, each of which is dimensionless.  This special 
form of the general ISO-GUM uncertainty equation is very handy for many uncertainty analysis 
situations. 

STANDARD UNCERTAINTY 

PITFALL:   Confusing Type A and Type B uncertainty. 

Type A evaluation of measurement uncertainty requires the taking of data from repeated 
observations of the subject parameter.  For example, the DC voltage accuracy of a particular 
model of DVM could be established by measuring a voltage standard repeatedly, under the same 
circumstances, with several DVM units.  The mean and standard deviation of the resulting data 
would provide a nominal value (mean) and an uncertainty (standard deviation) of that value. 

Type B evaluation of measurement uncertainty is obtained by applying scientific judgment to all of 
the available information about the parameter in question, including manufacturer’s data sheets, 
previous measurement data, etc. 

NOTE:  In common verification testing using off-the-shelf test equipment and standards, Type B 
evaluation of uncertainty is prevalent. 

EXAMPLE:  Type A Evaluation of uncertainty 

From the uncertainty equation, evaluate the standard relative uncertainty:  
( )

( )TEST

TEST

A
AU

. 

The relative uncertainty of the attenuation value of the composite attenuator is taken from the 
calibration report for the attenuator.  The example data shown below is typical of that obtained 
from a standards laboratory.  Assume that the calibration data has a gaussian probability 
distribution and that the values given represent the 2s (or  95%) confidence limits. 

Precision Attenuator Accuracy Data at 50 MHz 

Composite  
Atten. 
Setting 

(dB) 

Atten. from Cal. 
Report 

(dB) 

Atten. Cal. 
Uncertainty 
(± dB) 

10 9.959 0.005 

12 11.917 0.005 

20 19.987 0.005 

25 59.650 0.005 

35 34.960 0.005 

50 49.773 0.005 
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Converting to the linear domain (since the uncertainty equation is written in the linear domain): 
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PITFALL:   How to determine the underlying distribution and the confidence level for a 
performance parameter value taken from an instrument’s data sheet. 

EXAMPLE:  Type B Evaluation of uncertainty 

The true power delivered to the spectrum analyzer is estimated by the power meter.  The 
equation that describes the available power intern=ms of the power meter and power sensor 
parameters is: 

     
IKLm

PM
P mPS

AV =  

where mP  is the power indicated by the power meter. 

The relative uncertainty of this parameter is:   
( )

m

m

P
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The power meter reading is a digital value, delivered via the front-panel display or via the GPIB.  
The resolution of this reading is selectable.  Assume for this example, that the resolution is 0.1 
dB.  Any power reading that falls within one of the 0.1 dB intervals will be given the same 
reported value.  Therefore, a reported value could be due to any value within the interval.  This 
situation is best modeled by a uniform distribution. 

For a uniform distribution of width 0.1 dB, the standard deviation is: 
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 Converting to linear terms: 

  

    
( )

007.0110 10
03.0

±=







−=







 ±

m

m

P
PU

 

NOTE:  For most specifications given in manufacturer’s data sheets, assume that the value given 
represents at least 95% of the population of values.  95% is equivalent to 2s for a gaussian 
(normal) distribution and 1.645s for a uniform distribution.  Choose an assumed distribution 
based on the nature of the specification.  Most specifications can be treated as if they are taken 
from a gaussian distribution. 



PITFALL:  

Do data sheet values represent ( )AU  or 
( )
A
AU

? 

( )AU   will always have dimensional units:  volts, ohms, hertz, etc. 

( )
A
AU

 will always be dimensionless.  It will be specified as %, dB, or as a ratio. 

COMBINED STANDARD UNCERTAINTY 

Once a value is obtained for each standard uncertainty represented in the uncertainty equation, 
the combined standard uncertainty can be found. 

NOTE:  The uncertainty equation has the form: 

    ...22222 ++++= DCBAC σσσσσ    EQN.9 

Each of the squared terms in this equation represents a statistical variance.  Standard deviation 
(a.k.a, standard uncertainty) is defined as the square-root of the variance, regardless of the 
statistical distribution involved. 

EQN. 9 states that the combined variance of the response parameter (absolute amplitude 
accuracy, in this example) is equal to the sum of the individual variances of the contributing 
parameters. 

Recalling the uncertainty equation: 
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PITFALL:   The units of each standard-uncertainty term are not dimensionless, or are not 
consistent with one another. 

Since the uncertainty equation is written in the linear domain, each standard-uncertainty term 

(e.g., 
( )

REF

REF

M
MU

) will be expressed as a decimal number or as a %.  Clearly, the terms must all 

have the same units: either decimal or %. 

The combined standard uncertainty, 
( )

ACC
ACCUC , represents the standard deviation of the 

composite random variable, ACC .  If there are three or more contributors to 
( )

ACC
ACCUC , then 

the resulting distribution will be approximately gaussian, regardless of the distributions of the 
contributors. 

 



EXPANDED UNCERTAINTY 

( )
ACC

ACCUC  is a linear quantity.  The original specification for Absolute Amplitude Accuracy is a 

logarithmic quantity (dB).  Converting 
( )

ACC
ACCUC back to the log domain gives ( )ACCU  in dB. 

EXAMPLE: 
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PITFALL:   Choosing the correct “coverage factor” for the final uncertainty value. 

Now that the combined standard uncertainty is back in the log domain, it is a simple matter to 
determine a “coverage” factor that, when multiplied by the combined standard uncertainty, will 
give the desired degree of confidence that the true value of Absolute Amplitude Accuracy is 

contained within the limits ( )dBCdB ACCUACC ± . 

For a gaussian distribution, a coverage factor of 2 will provide 95% coverage (i.e., σ2 ). 

The expanded uncertainty becomes:  ( )dBC ACCU×2 . 

    ( ) dBACCU dBEXP 10.0±=  


